新型二维材料物理研究取得新进展

2020-09-24本站

  新型二维材料物理研究取得新进展。8月24日,Nature Physics期刊在线刊发了电子科技大学基础与前沿研究院夏娟研究员、王曾晖教授的研究成果Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers。 该工作利用能产生百万大气压(接近地心压强)的金刚石对顶砧技术,对层间强耦合二维范德瓦尔斯异质结这一类新型信息材料实现了高效物性调控,系统地研究了二维异质结的层间激子发光、电子能带结构等物理特性随压强变化的响应。电子科技大学夏娟研究员为第一作者,夏娟研究员和王曾晖教授为共同通讯作者。合作者还包括南京工业大学、南洋理工大学等单位的研究人员。 压力引发动力,动力激发潜力,不仅适用于心理学、教育学等领域,也适用于物理学。在实验凝聚态物理研究中,压力工程(Pressure engineering)是一种重要的调控材料物理特性的手段,不仅可与原位光学、电学研究相结合,且具有高效、连续、可逆等优点。在该工作利用的金刚石对顶砧(DAC)高压技术中,对顶放置的两个钻石的微米级砧面处可产生接近地心压强的超高静水压环境,能够对所研究的体系(以二维材料为例)产生大于30%的体积变化,从而实现对所研究材料体系的大幅高效调控。 压力工程:用金刚石对顶砧对二维异质结层间距离及激子行为实现高效调控。(图片来源:Nature Physics及论文作者) 二维范德瓦尔斯异质结因层内共价键-层间范德华作用的结构特性,以及多样化的能带匹配和层间耦合作用等特点,表现出丰富的光学、电学和光电特性,在实现新型光子、电子和光电器件方面具有独特的潜力。特别是具有强层间耦合作用的二维范德瓦尔斯异质结表现出更显著的层间激子行为,在未来信息器件领域的应用极具前景。与此同时,二维范德瓦尔斯异质结的层间激子对层间距离十分敏感;因此,通过压强等外界调控手段来改变二维范德瓦尔斯异质结的间距离,能够实现对层间激子及相关物理特性的高效调控。 金刚石对顶砧(DAC)调控二维异质结独特层间距及层间耦合作用示意图(图片来源:Nature Physics及论文作者) 基于此,本工作在成功获得层间强耦合WSe2-MoSe2二维范德瓦尔斯异质结的基础上,利用其层间距离可由外界压强高效调控的特点,采用DAC装置成功实现了高压下微观结构和物理特性的原位调控。研究者通过实验观察到了这类二维异质结的层间激子行为在一万个大气压(1 GPa)附近发生的显著变化,并通过理论计算该二维异质结在不同压强下的电子能带结构,成功地解释了这一独特的突变现象。 本工作所使用的层间强耦合二维异质结WSe2-MoSe2的形貌、结构,及其强耦合特性带来的独特激子行为。(图片来源:Nature Physics及论文作者) 本工作利用DAC技术所提供的超高压强成功实现了对二维异质结中层间强耦合作用的高效调控,有助于进一步推动基于这类二维范德瓦尔斯异质结的新型激子型器件研究,为未来此类新型信息器件的探索和应用提供了新的思路。 本项研究得到了国家自然科学基金、国家重点研发计划、四川省科技厅等项目的支持。(来源:电子科技大学) 相关论文信息:https://doi.org/10.1038/s41567-020-1005-7

  
作者:夏娟等 来源:《自然—物理》

留言与评论(共有 0 条评论)
   
验证码:

搜索